Exploring the Optimization Space for
Build to Order Matrix Algebra

Geoff Belter
Dept. of ECEE
University of Colorado
Boulder, CO 80309
belter@Colorado. EDU

Thomas Nelson
Dept. of Computer Science
University of Colorado
Boulder, CO 80309
Thomas.Nelson @ Colorado. EDU

ABSTRACT

The Build to Order (BTO) system compiles a sequence of matrix
and vector operations into a high-performance C program for a
given architecture. We focus on optimizing programs where mem-
ory traffic is the bottleneck. Loop fusion and data parallelism play
an important role in this context, but applying them at every op-
portunity does not necessarily lead to the best performance. We
present an empirical and exhaustive characterization of the opti-
mization space for these two optimizations reporting its size and
how many points in the space are close to the fastest option. We
show how optimizations of different parts of the program affect one
another and how the best choices depend on the computer system.
We also evaluate the suitability of several algorithms for search-
ing the space. We leverage these findings to ensure that the BTO
compiler produces kernels that outperform vendor-tuned BLAS on
a variety of modern computer architectures.

1. INTRODUCTION

Traditionally scientific programmers use linear algebra libraries
such as the Basic Linear Algebra Subprograms (BLAS) (Dongarra
et al.l (1988, [1990; Lawson et al.; |1979) and the Linear Algebra
PACKage (LAPACK) (Anderson et al., [1999) to perform their lin-
ear algebra calculations. Programmers link their application to an
implementation of these libraries that is tuned for the target ma-
chine, thereby achieving efficient, portable applications. For pro-
grams that rely on kernels with high computational intensity, such
as matrix-matrix multiply, this approach can achieve near optimal
performance. However, memory bandwidth, not computational ca-
pacity, limits the performance of many scientific applications (An-
derson et al.l [1999), with data movement expected to dominate the
costs in the foreseeable future (Amarasinghe et al.,[2009).

Because each BLAS routine performs a single mathematical op-
eration, such as matrix-vector multiplication, a tuned BLAS library

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC 011 Seattle, Washington USA

Copyright 2011 ACM ...$10.00.

Elizabeth Jessup
Dept. of Computer Science
University of Colorado
Boulder, CO 80309
Elizabeth.Jessup@Colorado.EDU

Boyana Norris
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439

norris @mcs.anl.gov

lan Karlin
Dept. of Computer Science
University of Colorado
Boulder, CO 80309
Tan.Karlin@Colorado.EDU

Jeremy Siek
Dept. of ECEE
University of Colorado
Boulder, CO 80309
Jeremy.Siek @Colorado.EDU

has a limited scope within which to optimize memory traffic. The
BLAS Technical Forum suggested several new routines that com-
bine sequences of old routines, thereby enabling loop fusion to de-
crease memory traffic (Blackford et al.| 2002; |Howell et al., |2008).
However, the number of BLAS combinations that would benefit
from fusion is larger than is feasible to implement for each new ar-
chitecture. For example, the four new kernels added into the BLAS
standard are not implemented in any major BLAS distribution.

Also, on modern parallel architectures calls to BLAS routines
limits the possibilities for threading optimizations. A sequence of
BLAS calls can only be computed in parallel for the duration of
each call, forcing unnecessary synchronization. By combining op-
erations, we create opportunities for greater parallelism.

To automate the generation of composed linear algebra routines
for memory bound calculations, we developed the Build to Order
Matrix Algebra (BTO) compiler. BTO accepts as input a sequence
of matrix and vector operations in a subset of MATLAB, together
with a specification of the storage formats for the inputs and out-
puts, and produces optimized kernels in C. With respect to stor-
age formats, BTO currently supports row-major and column-major
dense matrices. We plan to expand support to include symmetric,
triangular, banded, and sparse matrices. An initial prototype of the
BTO system fused loops at every opportunity (Siek et al., |2008)).
The next refinement of the system added the ability to explore all
possible fusions and used a hybrid search strategy that combined
analytic modeling with empirical performance testing (Belter et al.|
2009). Later improvements to BTO included the ability to produce
shared memory parallel code (Belter et al.l [2010) and analytically
model shared memory parallel systems (Karlin et al., 201 1a).

While the hybrid exhaustive search is over a limited set of param-
eters, it becomes impractical when searching over large numbers of
optimization parameters. In this paper, we present improvements to
BTO’s search capabilities and present an analysis of various search
strategies for fusion combined with data parallelism. In particular,
we make the following contributions:

1. We present a redesigned BTO compiler that can partition
computations to exploit data parallelism and that supports
multiple search strategies through a new interface (Section[2).

2. We characterize the space of all combinations of loop fusion
and data parallel transformations, analyze how these trans-
formations interact, and evaluate the extent to which they are
orthogonal (Section [3.1).

3. We compare and contrast four search strategies (Section[3.3)
and show how using them within BTO leads to speedups of
up to 180% compared to vendor-tuned linear algebra libraries

(Section3.4).

In Section 2} we outline the workings of the BTO compiler and
describe the interface for plugging search strategies into the BTO
compiler. In Section[3] we discuss strategies for searching through
particular problems and define the search heuristics for BTO. We
also present an empirical comparison of BTO to popular linear al-
gebra libraries for a test suite of kernels. In Section 4] we discuss
related work. In Section[5] we present conclusions and future work.

2. BTO OVERVIEW

This section provides an overview of the BTO compilation sys-
tem with an emphasis on two recent additions to it. The BTO com-
piler takes a high-level description of a sequence of matrix algebra
operations, in a subset of MATLAB, and produces C code opti-
mized for a particular target architecture.

The first release of BTO performed loop fusion and array con-
traction, exhaustively searched through all possible combinations
of loop fusion decisions, and used analytic modeling or empirical
testing to assess the profitability of each point in the search space.
The new release of BTO, which we introduce here, adds a parti-
tioning mechanism that enables data parallelism. With this addi-
tion, the number of optimization decisions has grown dramatically.
The second addition to BTO is a framework for plugging in search
algorithms to control which points in the search space should be
evaluated.

Figure [I] shows an example input file for BTO, in this case, the
GEMVT subprogram of the updated BLAS (Blackford et al.,[2002).
The user of BTO specifies the input types (including storage for-
mats) and a sequence of matrix, vector, and scalar operations, but
the user does not specify how the operations are to be implemented
(that is, what kinds of loops, how many threads, etc.) The BTO
compiler produces a C implementation in two broad steps. It first
chooses how to implement the operations in terms of loops, be-
ing mindful to maximize spatial locality by traversing memory via
contiguous accesses. It then searches for the combination of opti-
mization decisions that maximizes performance. In a prior paper,
we described how the BTO compiler performs loop fusion (Bel-
ter et all [2009). In Section 2.T] of this paper, we describe the new
support in BTO for partitioning computations to exploit data paral-
lelism and in Section [3| we report on the results of searching over
the combinations of loop fusion and loop parallelization decisions.

GEMVT
in:
y : vector, z : vector, A : matrix
alpha : scalar, beta : scalar
out:

X : vector, w: vector

{
x =betax (A" xy) +2z
w = alpha * (A * x)

Figure 1: The BTO input file for the GEMVT kernel.
Throughout the compilation process, BTO utilizes a dataflow

graph representation. Figure [2]shows the dataflow graph represen-
tation of the GEMVT kernel. The square boxes correspond to the

beta z X alpha

Figure 2: Example dataflow graph for GEMVT.

input and output matrices and vectors, and the circles correspond
to the operations. The numbers next to the circles are simply ID
numbers that we use for reference later in the paper.

The BTO compiler utilizes a simple type system to keep track of
which traversal order is contiguous. The type system is based on a
container abstraction. Containers may be oriented horizontally or
vertically, and containers may be nested inside of containers. The
types are defined by the following grammar, in which R is for row,
C'is for column, and S is for scalar.

orientations O == C|R
types T u= 0O<7m>| S

Figure [3] shows several types with a corresponding diagram de-
picting the container shape. The upper-left is a row container whose
elements are scalars. The nesting of containers enables both the de-
scription of matrices, such as the row-major matrix on the right, and
the description of partitioned matrices and vectors. The lower-left
diagram depicts a row that has been partitioned in half by adding
an outer row container. During the creation of the dataflow graph,
each node in the dataflow graph is assigned a type. The input and
outputs are assigned a type derived from the input file specification,
whereas the types associated with intermediate results are inferred
by the BTO compiler.

res> (I EEEEEE
C<r<s>>|[[TTTT]

R<R<S>>_| m

Figure 3: A vector, partitioned vector, and matrix with their
corresponding types.

For each arithmetic operation, BTO recursively introduces loops
to implement operations in terms of one lower dimension. For ex-
ample, a matrix operation is lowered to a loop over vector opera-
tions, and the vector operations are subsequently lowered into loops
over scalar operations. At each step, the loop order is chosen to
match the type specification thereby ensuring contiguous memory
traversals. Figure[d]shows the dataflow graph for the matrix-vector
product y < Ax in which A is row-major. In the figure, loops
are represented as subgraphs surrounded by dotted lines. Refer to
Belter et al.| (2009) for further details concerning this process.

2.1 Partitioning

To enable data parallelism and tiling for cache, we partition op-
erations and their operands. The partitioning is accomplished by
adding zero or more extra layers of containers to the type for each
node in the dataflow graph. For example, the decision to partition
the row in Figure[3]is encoded by changing its type from R<S> to
R<R<S5>>. To more conveniently discuss the rules for partitioning
containers, we write a type as a list of orientations (omitting the

""""""""""" .
| OFORI I H

Figure 4: Example dataflow graph of the operation y — Ax
with loops expressed as subgraphs.

scalar). For example, we write C, R as shorthand for C<R<S>>.
We use a comma to append two lists and to add an element to the
front or back of a list.

The recursive nature of the type system and our code generation
process allows for the introduction of partitions with few modifica-
tions to the optimization and code generation phases of BTO.

The BTO compiler makes partitioning decisions on a per-operation
basis, as directed by a search algorithm. The partitioning decisions
are subject to the restrictions described in Table[T} Consider a loop
that performs the operation y < = + z and look at the add/sub
row of Table|l} In the Operation column, the fact that the variable
7 is used for both operands specifies that the type of x and y must
be identical and be of the form u, O, , were u and [are possibly
empty lists of orientations. In this case, suppose 7 = R, so u and
[are empty and O = R. The Type column specifies which type is
changed by the partitioning, in this case the type 7 of x,y, and z.
The new type that results from partitioning is given in the Partition
column. In this case, we duplicate the O = R, adding it as an outer
layer, so the resulting type is R, R.

Algo Operation Type List Partition
add/sub T=T4+T T u, 0,1 O,u,0,l
mult-bc Te =Ta X Tp :Z Zi: gi gi g: Zi: g: 52
mult-ac T =Tq X Tp :Z ZZ: g: ll: g: Zz: g: ll:
T Uqg, R, 1 R,uq, R,

mult-ab* 7. =174 X Tp T: UZ: C:l: C U:, C:l:
scale :zf:g T u, O, 1 O,u,0,l
mamenmne DG OOt

where O # Oy,

Table 1: Linear algebra partitioning rules. Algorithms marked
with **’ require a introduction of a reduction operation.

In some situations, we would like to treat a matrix as having more
than one type. Consider the earlier example GEMVT shown in
Figure[T]and suppose we wish to partition the matrix-vector product
Az butnot A'y. To partition Az we must change the type for A, but
then the type of A would be inconsistent with the non-partitioned
operation A’y. To resolve this issue, we introduce cast nodes into
the graph. A cast node represents a modification to how we view
the matrix; it does not cause any actual data movement. When Az
is partitioned it will introduce a cast of A allowing the use of A
in A’y to remain consistent. Should two or more similar casts be
introduced on the same node, the casts may be removed enabling
additional optimization such as loop fusion.

2.2 Search Framework

In this section we define the space of transformations that we
consider in BTO and explain how we represent a point in the search

space. This representation defines an interface between the BTO
compiler and search strategies that we can plug into BTO. In Sec-
tion [3.2] we discuss several strategies that we have evaluated for
searching the space of transformations.

The two transformations that we consider in this paper are loop
fusion and shared-memory data parallelism. To enable a wide va-
riety of search strategy plugins, such as off-the-shelf optimization
algorithms, we represent a combination of transformations as an
array of integers.

We must balance a trade-off between generality and searchabil-
ity in designing the search space. A restrictive search space is eas-
ier to search, but if the space is too small, we risk cutting out the
fastest code versions. In our space characterization we emphasize
completeness, at the cost of search speed.

The integer array is composed of two parts: the first part repre-
sents fusion decisions and the second part represents parallelization
decisions. To represent the fusions, we use a fully connected graph
where the nodes are operations that are identified by the unique
numbers attached to the operations in the dataflow graph. Each op-
eration in the input to BTO may correspond to a nest of loops, so
we need to express the depth to which fusion can occur. Thus, each
edge in the graph is labeled with an integer: 0 for no fusion, 1 to
fuse the top-most loop of the loop nest, 2 to fuse the top two loops,
etc. This representation can express all possible fusion combina-
tions; you cannot fuse two inner loops if you haven’t yet fused their
enclosing loops. On the flip side, this representation does include
invalid points because in general it is not possible to fuse every pair
of loops. In the near future we plan to add constraints to the search
plugin interface so that we can express which combinations of fu-
sions are illegal and thereby enable the search strategies to focus
just on the legal points.

The following adjacency matrix shows a particular combination
of fusion decisions for GEMVT kernel. The rows and columns of
the matrix are labeled by the ID numbers for the operation nodes in
the dataflow graph of Figure[2] This matrix encodes the decision to
fuse operations 4 and 5 (to depth 2) and then separately fuse 7 and
9 (to depth 1).

—_
(=]

© WA
EEECEECEEE NN
X % x|
X % o ol
x — o ol
cococo

The graph need not include every pair to be fused: we take the
transitive closure of the graph to determine all of the fusions. So,
for example, if the search plugin specifies O and 1 to be fused, and
1 and 2 to be fused, but not 0 and 2, BTO will still fuse all three
into a single loop. Taking the transitive closure is important for the
orthogonal search strategies discussed in Section@

The second part of the array represents a table of partitions with
a row for each operation in the input kernel. Each row contains
three parameters that we search over. The first is a boolean value
indicating whether or not to partition the operation. The second is
the direction to apply the partition and the third is the number of
threads to divide the computation into. To explain what we mean
by “direction”, consider the most general case of a matrix-matrix
multiplication,

Cm,n == E Am,k * Bk,n
k

There are three directions in which we can partition this operation:
m, n, and k. If we partition along the rows of A, for example, we
should also partition the rows of C (the ‘m’ direction). For vector

Kernel Operation
WAXPBY | w = azx + By
ATAX y= AT (Ax)
GEmvr | = B(ATY) 42
w = a(Az)
B=A+u *vf +U2*’Ué
GEMVER | z = 8(BTy) + 2
w = a(Bz)

Table 2: Kernel specifications

operations or matrix-vector operations, the possible directions are
a subset of these three. These directions correspond to the rules
given in Table[I] For the GEMVT example, we might have a table
like the following:

Operation ID | Partition? Direction ~Number of Threads
4 1 m 4
5 1 k 4
7 0 - -
9 1 n 2

It is straightforward to represent the partitioning table as an array
of integers, thereby giving us the second part of the overall array
that represents a point in the search space.

This representation can express arbitrary partitions and fusions,
but it creates a huge space of points to search over. Most points
in this space are either illegal or redundant. The illegal points are
automatically rejected by the BTO compiler. We are in the process
of adding constraints to the search plugin interface to avoid the
illegal and redundant points.

In Section [3.2] we define four search strategies and compare and
contrast them with respect to their ability to find good points in
the space, that is, points with high performance, and with respect
to how many points have to be inspected, which determines how
much time it takes to perform the search.

3. EXPERIMENTAL EVALUATION

Our empirical evaluation has three parts. First, we analyze the
entire space of fusion and parallelization decisions across four ker-
nels: WAXPBY, ATAX, GEMVT, and GEMVER, shown in Ta-
ble P] ATAX is used in linear least squares calculations (Kin-
caid and Cheney, 2002). The other three are from the updated
BLAS (Blackford et al.|2002). In particular, GEMVT and GEMVER
are used in Householder bi-diagonalization, which is used to find
the singular value decomposition of a matrix (Howell et al.| [2008)).
The search space for the kernels WAXPBY, ATAX, and GEMVT
is relatively small; we do an exhaustive empirical evaluation of the
search space for these kernels. The search space for GEMVER is
too large for an empirical evaluation; we instead do an exhaustive
analytic evaluation of its search space, using a model that we de-
veloped prior to this work (Karlin et al., 2011a).

In doing these evaluations, our goal is to determine how diffi-
cult it is to find the highest-performing point in the search space
and what search strategies are most effective. In particular, we are
interested in which optimization parameters can be considered in-
dependently. If two code transformations are independent, the im-
provement from applying one transformation is consistent regard-
less of whether or not you apply the other transformation. If they
are not independent, there may be destructive or constructive inter-
ference, where applying one transformation changes the effect of
other transformations. If indeed two code transformation are inde-
pendent, then we need not search over all combinations of the deci-

sions, but can instead consider one decision after the other, thereby
drastically reducing the search space.

The second part of our evaluation goes more in depth to answer
the independence question by studying two variations of orthogonal
search and comparing the produced routines to those found using
exhaustive search and random search.

The final part of our evaluation compares the code generated by
BTO for each kernel to implementations of the kernels using the
vendor-tuned BLAS. For the BTO versions, we take the best point
in the space, determined by the exhaustive search, and compile it to
C using the BTO code generator. For the vendor-tuned versions, we
select the shortest sequence of BLAS routines needed to implement
the kernel.

3.1 Analyzing the Full Search Space

We found that visualizing combinations of individual optimiza-
tion decisions and their interactions is extremely difficult because
the space is high-dimensional, with many dimensions containing
only a few discrete choices. Nevertheless, we have found that
a particular kind of scatter plot is reasonably good for analyzing
the space of fusions and parallel partitioning. Figures [5] [f] and
present the exhaustive empirical data for WAXPBY, ATAX, and
GEMVT. The search space for GEMVER is too large to collect ex-
haustive empirical data. (The empirical, exhaustive search ran for
over 24 hours without finishing.) We instead present the data for
fusion but not partitioning in Figure[§] This data was collected on
an Intel Core i5, with a dual-core 2.6 GHz processor and 4GB of
memory.

The scatter plots can be understood as follows. Each column of
boxes contains all the points with the same number of loops fused.
For example, the left-most column of Figure /| contains the points
in which no loops were fused. The next column to the right has
the points where two loops were fused. Each row of boxes contains
the points in which the same number of operations were partitioned
for parallelism. The bottom row has the point with no partitioning;
the next row up has the points where only one operation was par-
titioned. Within each box, the x-axis is labeled with our internal
version IDs and the y-axis is labeled with the runtime of the kernel
in seconds, so lower is better.

Turning our attention to Figure[5} we see that the best performing
WAXPBY version is in the upper-rightmost box, in which all three
operations are fused and partitioned. Similarly, for the ATAX ker-
nel (Figure[6)) the upper-rightmost box contains the best performing
version. For GEMVT (Figure[7) the best performing version is in
the rightmost column and second-highest row. This version is fully
fused (it is not legal to fuse all 5 operations) but only 4 of the 5
operations are partitioned for parallelism.

In the figures, the best versions are found in the upper right por-
tion of the graphs, indicating that max fusions and nearly complete
partitioning is required to achieve high performance. It is worth
noting that in all of these cases, maximal fusion is best, however
the best version of GEMVT does not have maximal partitioning.
Closer examination of GEMVT shows that four of the five opera-
tions that can be fused; these four must be fused and partitioned to
achieve good performance. But partitioning the fifth operation (a
vector scale on the result of fused loops) can have negative effects.
Closer inspection of WAXPBY shows that the four points in the
upper right box corrspond to four different ways to fuse the inner
loops, and completely fusing both inner and outer loops is neces-
sary for best performance. Finally, the two points in the upper right
box of ATAX represent both operations fused and partitioned, and
differ only by inner loop fusion. Again fusing both inner and outer
loops is necessary for best performance.

05 1525
| | | | L1111
0 2 3
- - 0.15
13 . . ‘“— 0.10
— [0.05
015] .oQ . I~
0 0.10 -, ; . -
5 0.05 - =
s — - 0.15
g 1.1 . - - 0.10
— — 0.05
0.15 -
0.10 Ole . B
0.05 - . =
TTTTTTTTTTTTTTTTI
05 1525 05 15 25
Fusions

Figure 5: The space of all fusion and partitioning decisions for
the WAXPBY kernel. The outer x-axis is the number of loops
that are fused, while the outer y-axis is the number of opera-
tions that are partitioned for parallelism. The inner x-axis is
our internal version IDs and the inner y-axis is the runtime in
seconds (so lower is better).

Moving up a column of scatter plots increases the amount of par-
titioning in the program. If always adding more partitioning were
beneficial, we should observe decreasing runtimes as we move up
the columns of boxes. In both Figure [5]and Figure [7] we observe
little or no runtime reductions moving up most of the columns. The
two exceptions are in the rightmost columns.

Moving right across a row of scatter plots represents increasing
amounts of loop fusion in the program. If adding more fusion al-
ways improved performance, runtimes would decrease as we move
right across any given row. In the case of WAXPBY (Figure[5) the
bottom row shows this trend indicating that, in the absence of par-
titioning, it is best to increase the amount of fusion. The second
row shows similar trends. However, in the top two rows, when two
or three of the operations are partitioned, the trend becomes less
apparent. In contrast to WAXPBY, when moving right across any
row for the GEMVT kernel (Figure[7) we observe fairly level bands
of runtimes. There is no trend toward reducing runtime with more
fusion.

Although the best performance often occurs with maximal fu-
sion and partitioning, the intermediate fusion and partitioning steps
do not necessarily improve performance, which makes this space
difficult for direct search optimization methods. For example, ap-
plying partitioning to the unfused or partially fused kernel variants
rarely provides significant runtime improvements, as can be seen
by choosing a particular column and comparing the results across
rOWS.

Fusion in GEMVER.

There are 648 unique loop fusion combinations that BTO can
generate for the GEMVER kernel. The performance varies widely
based on the fusion decisions, as shown in Figure [8| The x-axis
is labeled with the unique combinations of fusion ranging from no

2468 12
0 O I B

0 2
0.025 — - -
0.020 el e -
0.015 - 2 -
0.010 — -
0.005 — -
2] — — 0.025
s - - 0,020
h= -1 — 0.015
= . — 0.010
aQ . — 0.005
0025 4 [. -
0.020 — -
0.015 - 0 =
0.010 -
0.005 — -
TTTTTT TTTTTT
2468 12
Fusions

Figure 6: The space of all fusion and partitioning decisions for
the ATAX kernel. The outer x-axis is the number of loops that
are fused, while the outer y-axis is the number of operations
that are partitioned for parallelism. The inner x-axis is our in-
ternal version IDs and the inner y-axis is the runtime in seconds
(so lower is better).

fusion on the left, to all legal fusions on the right. The y-axis is
labeled with the runtime of the kernel in seconds (lower is better),
for which each boxplot presents the average behavior of the given
grouping.

The lowest runtimes are found only on the right portion of the
graph, so considerable fusion is important for high performance
GEMVER. However, many versions that have high levels of fu-
sion still perform poorly. This is evident in the performance range
shown on the right portion of the graph. Moreover, in Figure
we observe four distinct bands of runtimes that overlap in the fu-
sion dimension. The band with the lowest runtime (at the bottom
of the graph) starts nearly two thirds of the way across the x-axis.
This means that significant speedups can be achieved by focusing
on a few key operations, but the best performance requires fusing a
larger set.

Search Difficulty.

To determine the number of points in the search space that are
close to the optimal we compared the runtime of all versions to
the best version produced by the compiler. We show the number
of versions within 5% of the best performing kernel in Table [3.1]
For GEMVT on the Core i5 only two versions (including the best)
are within 10% of the best performing version. That translates to
0.6% of the search space being close to best. On the 48 core AMD
no other version other than the best was within 10% of the best
performing routine. Considering only loop fusion for GEMVER:
on the core 2 Duo, there are 18 versions within that threshold out
of 648 (2.8%). On the 48 core AMD for GEMVER, there are two
versions within 10% of best (0.2%). Finally, for GEMVER on the
core i5 six (0.9%) of the versions are close to the best.

0.3

& 8 8 8 8 8 8
£ ; :
- - r oeg T - - B .
é g | B EB @B EBE BB 3 B 85 =) BBB EE g8 EE E@ EB = 5 - éE é B E
: :
c 3 Wil eee ® g S ¥ gop 0 oapo @0 6008 @o
=1 L L O + R dr T + T i
h S LN LT
o |
o

T

Amount of fusion increasing from left to right

Figure 8: Performance comparison of all the fusion decisions for GEMVER. The number of loops fused increases from left to right.

Kernel Machine Total Points | Percent Within
10% of Best
GEMVT Core i5 326 0.6%
GEMVT | 48-core AMD 326 0.3%
GEMVER Core i5 648 0.9%
fusion
GEMVER | 48-core AMD 648 0.3%
fusion
GEMVER Core 2 Duo 648 2.8%
fusion

Table 3: The search space for the larger kernels, GEMVT and
GEMVER, is difficult. Only a few percent or less of the points
in the space are within 10% of the best with respect to runtime.

3.2 The Search Strategies

To further characterize the search space, we compare four search
strategies with respect to how fast they find good points in the
search space. In the following paragraphs we describe and moti-
vate each of these strategies.

Exhaustive Search.

Exhaustive search involves testing every version of a kernel em-
pirically. For small kernels, such as WAXPBY, ATAX, and GEMVT,
it is possible to empirically test every version. However, for GEMVER,
the space is too large to search exhaustively. We include exhaustive
search to provide a good baseline for comparison and to provide
the gold standard with respect to finding the best point in the space.

Random Search.

For random search we select a set of values for each tuning pa-
rameter randomly and then test the routine. Because not all possible
combinations of parameters are legal, we also perform a correctness
test to make sure the routine produced is valid. Random search pro-
vides a baseline for comparison with other search heuristics, as well
as an indicator of how easy the space is to search. Generally speak-

ing, if random search does well on a problem, the problem is fairly
easy.

Orthogonal Search.

In orthogonal search, each tuning parameter in the search space
is defined as a dimension. In our case, this means each loop fu-
sion decision (for a pair of operations) and each partitioning option
represents one dimension in the search space. Orthogonal search
is carried out by varying the parameters of one dimension while
holding the other dimensions constant. Then each successive di-
mension is explored using the best found values for the previous
dimensions (Seymour et al., 2008). For problems where the opti-
mal value of search dimensions do not influence each other, orthog-
onal search finds the optimal solution in all dimensions in a very
short amount of time. However, when the value chosen for one di-
mension impacts the best value for another dimension, orthogonal
search can lead to suboptimal choices. Moreover, when using or-
thogonal search, the order in which dimensions are explored can
change the result of the search.

Hybrid Orthogonal/Exhaustive.

Our hybrid search strategy is a combination of orthogonal and
exhaustive search. This strategy tries all combinations of fusion
decisions, without partitioning. It then takes the best of those com-
binations and tries all combinations of partitioning decisions. This
strategy is motivated by the observation that, in the kernels we have
studied, the best choice of fusions is seldom affected by the parti-
tioning decisions.

3.3 Search Strategy Comparison

To evaluate the search methods’ usefulness within BTO we ran
tests on the four kernels in Table[2] on an Intel Core i5, with a two-
core 2.6 GHz processor and 4GB main memory. Table 4] summa-
rizes the results of the search strategies. For each strategy and ker-
nel, we list the empirical runtime of the best version found by the
strategy, we indicate whether the search strategy found the best ver-
sion, and the number of points in the space that were tested in the

0 200 0 200
I I T I O [I I I |
0 2 3 4
. . - 0.03
s - -] °- 0.02
. - 0.01
0.03 . -
0.02 - 4 J.‘ 0.\ e b] |
0.01 =
- [s0e - 0.03
°a @ . 0
m Ja|H ||t e - 0.02
5 . — 0.01
S 0.03 -
e h |z, -
[a 0.02 - 2 /] s ° 2 |
0.01 -
- i, R | PR NG . o003
-1 - 0.02
. - 0.01
0.03 4 s s L i -
0.02 0 =
0.01 -
7T 17T T T 17T T 17T T 17T T T T T 17T
0 200 0 200
Fusions

Figure 7: The space of all fusion and partitioning decisions for
the GEMVT kernel. The outer x-axis is the number of loops
that are fused, while the outer y-axis is the number of opera-
tions that are partitioned for parallelism. The inner x-axis is
our internal version IDs and the inner y-axis is the runtime in
seconds (so lower is better).

execution of the strategy.

For GEMVER, to reduce the search time, we used the memory
model of |[Karlin et al.| (2011a) instead of empirical performance
testing. For both WAXPBY and ATAX, orthogonal, hybrid, and
exhaustive all find the same optimal version. For GEMVT, the hy-
brid finds the best version, but orthogonal search fails.

For GEMVT, the two best performing versions differ only in
whether or not the final scale operation is partitioned, which does
not have a significant impact on performance. The exhaustive and
hybrid search strategies occasionally differ in choosing to add thread
partitions to that final operation, depending on noise in the runtime.
The orthogonal strategy fails to find the optimal version because
fusing loops 7 & 9 without also fusing 4 and 5 results in worse per-
formance, as shown in Figure[9] This graph has boxplots showing
the runtime distributions of the fusion variants without any parti-
tioning: it is a more detailed view of the points in the bottom row
of Figure[7]

The GEMVT result is interesting because fusing only one loop
increases runtime, whereas fusing additional operations into that
same loop reduces runtime to less than the unfused kernel. Look-
ing at the dataflow graph in Figure 2] we see that it is fusing the

Best Number
Problem Search Best Found | Version | Versions
Strategy Runtime (s) | Found? | Tested
Exhaustive 0.059 Yes 25
Hybrid 0.059 Yes 4
WAXPBY Orthogonal 0.058 Yes
Random 0.069 No 11
Exhaustive 0.118 Yes 12
Hybrid 0.116 Yes
ATAX Orthogonal 0.116 Yes 3
Random 0.180 No 11
Exhaustive 0.111 Yes 326
Hybrid 0.109 Yes 11
GEMVT Orthogonal 0.172 No 6
Random 0.181 No 11
Exhaustive* 0.198 Yes* 8456
Hybrid 0.198 Yes 651
GEMVER Orthogonal 0.244 No 132
Random - No -

Table 4: Comparison of the exhaustive, orthogonal, hybrid, and
random search strategies on four test kernels. For GEMVER,
exhaustive search is marked with * because this data is based
on the predicted performance from out analytic model instead
of empirical testing.

matrix-vector multiplication Az in operation 9 into the addition
from operation 7 that increases runtime. It is worth noting that the
orthogonal search is particularly vulnerable to variation in the em-
pirical timing results. For example, when trying to decide if fusing
operation 4 into the fused loop with {5,7} tests can easily find
{4,5,7} to be slower, especially if only a single empirical run is
produced.

For GEMVER the result is similar to GEMVT: both exhaustive
and hybrid find the best version and orthogonal does not. In this
example, hybrid tests 7.6 % of the points that full exhaustive tests,
representing a drastic reduction in search time.

For GEMVER random search strategy performed particularly
poorly because all of the points it selected were illegal.

3.4 Comparison with BLAS

To place the performance of the routines generated by BTO in
context, we compare BTO results with vendor tuned BLAS. We
compare to both AMD’s Core Math Library (ACML) and Intel’s
Math Kernel Library (MKL). The vendor comparison routines are
comprised of a series of calls into the library. In both cases the
libraries are fully threaded. Figure [T0] shows the performance in
MFLOPS on the y-axis and a range of matrix orders on the x-axis
for several kernels and running on a 4 socket, 48 core AMD. For
GEMVER, (Figure [T0(a)) we show three different runs, each with
a different number of threads, for BTO. Utilizing all 48 cores is
not ideal; for larger matrix orders, 24 threads is optimal while for
smaller matrix orders, we see that 12 threads is best. On aver-
age BTO is 2.7 times faster than ACML on GEMVER. For larger
orders of GEMVT (Figure [I0(b)), we observe a factor of two per-
formance improvement, while for smaller orders ACML performs
significantly better. The ATAX kernel (Figure[TO(d)) shows perfor-
mance similar to that of GEMVT, with BTO outperforming ACML
by 2.2 times for larger matrix order, but performing worse for small
order. With WAXPBY (Figure [[0(c)) we see on average 1.6 times
speedup over ACML. The loop fusion is the significant portion of

0.98

0.97 - 4

0.96 - B

0.94 - B

Runtime

0.92+ B
= = = =

091 B
==1]

0.9=

{ {7.9} {5,7} {45y {4,5X7,9} {579y {457} {4,5,7,9}7

Fusion Combinations

Figure 9: A comparison of runtimes for different fusion com-
binations of GEMVT. The operation numbers correspond to
Figure 2]

the performance difference and allows BTO to outperform ACML
even for small matrix orders. For GEMVT, WAXPBY, and ATAX
it is best to utilize only a small portion of the available cores.

Figure[[T]presents the same set of experiments from a 2 core In-
tel i5 using the MKL BLAS library. The results for GEMVER (Fig-
ure[[T(@)) and WAXPBY (Figure[TT(c)) are similar with BTO out-
performing Intel MKL on average by 2.8 and 2.4 times respectively.
For GEMVT (Figure[I1(b)) and ATAX (Figure[T1(d)) BTO’s through-
put is 10-20% greater than MKL’s throughput. We attribute the
smaller performance gains relative to the tuned BLAS library to
a highly optimized hand-tuned GEMV in MKL. The optimization
enables two separate GEMV calls to perform nearly as well as the
fused versions created by BTO, which rely on a native compiler for
all but loop fusion and parallelism.

4. RELATED WORK

Loop Fusion and Parallelization.

Megiddo and Sarkar|(1997) study the problem of deciding which
loops to fuse in a context where parallelization choices have already
been made (such as an OpenMP program). They model this prob-
lem with a weighted graph whose nodes are loops and whose edges
are labeled with the run-time cost savings that would occur if the
two loops were fused. The results from our experiments bring the
accuracy of this model into question. For example, in Figure
we have a situation in which the cost savings of a combination of
fusions is not simply the sum of the cost savings of the pairs of fu-
sions in that combination. Furthermore, because the parallelization
choices are fixed prior to the fusion choices, their approach some-
times misses the optimal combination of parallelization and fusion
decisions.

Darte and Huard| (2000), on the other hand, study the space of
all fusion decisions followed by parallelization decisions. |[Pouchet
et al|(2010) take a similar approach. They use a hybrid approach
that exhaustively searches over fusion decisions then uses the poly-
hedral model with analytic models to make tiling and paralleliza-
tion decisions. These approaches roughly correspond to the hybrid
search technique in this paper.

Bondhugula et al.|(2008) employ the heuristic of maximally fus-
ing loops. Loop fusion is generally very beneficial, but too much
can be detrimental as it can put too much pressure on registers and
cache (Karlin et al.| 2011b).

Bondhugula et al.| (2010) develop an analytic model for predict-
ing the profitability of fusion and parallelization and show speedups
relative to other heuristics such as always fuse and never fuse. How-
ever, they do not validate their model against the entire search
space, as we do here. It would be interesting to compare their
model and their results to the best possible optimization choices
found by our exhaustive search.

Search for Autotuning.

Vuduc et al.| (2004) study the optimization space of applying
register tiling, loop unrolling, software pipelining, and software
prefetching to matrix multiplication. They show that this search
space is very difficult (a very small number of combinations achieve
the high performance) and they present a statistical method for de-
termining when a search has found a point that is close enough to
the best.

Balaprakash et al.|(2011) study the effectiveness of several search
algorithms (random search, genetic algorithms, Nelder-Mead sim-
plex) to find the best combination of optimization decisions from
among loop unrolling, scalar replacement, loop parallelization, vec-
torization, and register tilling as implemented in the Orio autotun-
ing framework (Hartono et al.|[2009). They conclude that the mod-
ified Nelder-Mead method is effective for their search problem. We
are currently collaborating with these authors to integrate modified
Nelder-Mead into the BTO compiler.

Chen et al.|(2008)) develop a framework for empirical search over
many loop optimizations such as permutation, tiling, unroll-and-
jam, data copying, and fusion. They employ an orthogonal search
strategy, first searching over unrolling factors, then tiling sizes, etc.
Tiwari et al.| (2009) describe an autotuning framework that com-
bines ActiveHarmony’s parallel search backend with the CHiLL
transformation framework.

Looptool (Qasem et al.|[2003) and AutoLoopTune (Qasem et al.|
2006) support loop fusion, unroll-and-jam and array contraction.
AutoLoopTune also supports tiling. POET |Y1 et al.| (2007) also
supports a number of loop transformations

Fartitioning Matrix Computations.

The approach to partitioning matrix computations described in
this paper is inspired by the notion of a blocked matrix view in the
Matrix Template Library (Siekl [1999). Several researchers have
subsequently proposed similar abstractions, such as the hierarchi-
cally tiled arrays of |Almasi et al.|(2003)) and the support for matrix
partitioning in FLAME (Gunnels et al., [2001).

Search with Empirical Evaluation.

Bilmes et al.| (1997) and Whaley and Dongarra (1998) autotune
matrix multiplication using empirical evaluation to determine the
profitability of optimizations. [Zhao et al.| (2005) use exhaustive
search and empirical testing to select the best combination of loop
fusion decisions. |Yi and Qasem)| (2008)) apply empirical search to
determine the profitability of optimizations for register reuse, SSE
vectorization, strength reduction, loop unrolling, and prefetching.
Their framework is parameterized with respect to the search algo-
rithm and includes numerous search strategies.

S. CONCLUSIONS AND FUTURE WORK

In this paper we described two extensions to the BTO compiler:

Performance (MFLOPS)

Performance (MFLOPS)

Performance (MFLOPS)

Performance (MFLOPS)

Performance (MFLOPS)

Performance (MFLOPS)

3000

[e] ACML
2500 x BTO 10 Threads
2000 Q
XEXXAXKXAXX XXX XK XXX KX XXX
1500 xX.
x&x*
1000)
0000()0000()0000()0000()0000000000000000000(
500
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix Order
(b) GEMVT
7000
O
o ACML
6000 x BTO 10 Threads
5000+
4000
[e] XIXXXXKXXXXKXKXKKXXX XK XX KX KX XXX
3000 X%
%0
2000 o
000060000000000000000000000000000000000]
1000+
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Matrix Order

(d) ATAX

Figure 10: Performance comparison of BTO and Parallel ACML on a 48-core AMD Opteron.

3500 & o ACML v BTO 24 Threads
x BTO 48 Threads < BTO 12 Threads
3000 °.8
Vo
4 V! &4 4% vy {
2500 ¥ oo g e BEBEIBLELE 5 < S5BEG SBTFIEBEIZ 8B
°
2000
Vix
1500 x
1000 %7 C006EEEE00000000000000E000000C00O000000000]
o
500 090
kS
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix Order
(a) GEMVER
20001 o ACML
] % BTO 8 Threads
x
1500
1000 x"’_‘xxxxxxxxxgxxxx>_<xxxxxxxxxxxxxxxxxxxgxxxx
()
500 o oooooooooOoooooooooooooooooooooocoooooooc’o‘
0 T T T T T T T T 6
0 2 6 8 10 12 14 16 18x10
Matrix Order
(c) WAXPBY
4000
o Intel MKL
8500450 % BTO2Threads
3000
2500 Kx*xR L L 31 N bt 1S L
xXx
2000
o
1500 *
1000 x20000000000000006ACC0OC00ACCOCOCOO0NA0000N000Y
x
500
x
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix Order
(a) GEMVER
1400
X XX x X
1200 5 XX xx Suwx xxxx X x
* x
1000
800
600 ©0000500609000,00000000000060 004,05000000000
400+
[e] Intel MKL
200+ x BTO 2 Threads
0 T T T &
0 6 8 10 12 14 16 18x10f
Matrix Order
(c) WAXPBY

Performance (MFLOPS)

Performance (MFLOPS)

3000
o Intel MKL
2500 x BTO 2 Threads
2000
1500
0 xxx* X ok X EE XXXy x X XXX XXX
1000 % e@08600000000000BCA000000C000CO0
500
0
0 00 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix Order
(b) GEMVT
9000
8000 O Intel MKL
x BTO 2 Threads
7000
6000
5000
4000
3000
X x xXx XXX xXXyx x XXX
2000 35 5880¢ DEOS0585000000000500000558808860000
1000
0 00 20 00 4000 5000 6000 7000 8000 9000 10000

Matrix Order

(d) ATAX

Figure 11: Performance comparison of BTO and Parallel Intel MKL on a 2 Core i5.

partitioning computations for data parallelism and an interface to
make the BTO compiler extensible with respect to search strate-
gies. We present an analysis of the complexity and size of the
optimization space for the combination of two optimizations: loop
fusion and data parallelism. Using our new search interface, we im-
plemented four search strategies in BTO. We compare and contrast
each of these strategies and show that hybrid orthogonal/exhaustive
and exhaustive search always find the optimal routine for the tests
we performed, while random search never does. The orthogonal
strategy only succeeds in finding the best routine for the two small-
est kernels and fails to find the optimal routine for the two larger
kernels. Finally, we compare the best version found by BTO to
vendor BLAS implementations and show that BTO produces more
efficient code.

To further improve the BTO compiler we plan on implementing
other search strategies, such as a modified Nelder-Mead and ge-
netic algorithms. We also intend to add other optimizations using
our partitioning framework, such as cache tiling, vectorization, and
targeting GPUs. Additionally, we plan to extend the BTO compiler
to support more matrix formats, especially sparse matrices.

Acknowledgments

This work was supported by the NSF awards CCF 0846121 and
CCF 0830458. This work was also supported by the Office of
Advanced Scientific Computing Research, Office of Science, U.S.
Dept. of Energy, under Contract DE-AC02-06CH11357.

References

G. Almasi, L. D. Rose, J. Moreira, and D. Padua. Programming for
locality and parallelism with hierarchically tiled arrays. In The
16th International Workshop on Languages and Compilers for
Parallel Computing, pages 162—-176, College Station, TX, 2003.

S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally,
E. Elnohazy, M. Hall, R. Harrison, W. Harrod, K. Hill, et al.
Exascale software study: Software challenges in extreme scale
systems. DARPA IPTO, Air Force Research Labs, Tech. Rep,
2009.

W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and
B. F. Smith. Achieving high sustained performance in an un-
structured mesh CFD application. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM), Super-
computing ’99, Portland, Oregon, United States, 1999. ACM.

E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKen-
ney, J. DuCroz, S. Hammarling, J. Demmel, C. Bischof, and
D. Sorenson. LAPACK: A portable linear algebra library for
high performance computers. In Proceedings of Supercomput-
ing '90, pages 2—11, New York, NY, November 1990.

P. Balaprakash, S. Wild, and P. Hovland. Can search algorithms
save large-scale automatic performance tuning? Conditionally
accepted for Sixth international Workshop on Automatic Perfor-
mance Tuning (iWAPT2011), July 2011.

G. Belter, E. R. Jessup, 1. Karlin, and J. G. Siek. Automat-
ing the generation of composed linear algebra kernels. In SC
’09: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, pages 1-12, Port-
land, Oregon, 2009. ACM. ISBN 978-1-60558-744-8. doi:
http://doi.acm.org/10.1145/1654059.1654119.

G. Belter, J. G. Siek, I. Karlin, and E. R. Jessup. Automatic gen-
eration of tiled and parallel linear algebra routines. In In the
Fifth International Workshop on Automatic Performance Tuning
(iWAPT’10), pages 1-15, Berkeley, California, June 2010.

J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing

matrix multiply using PHiPAC: a portable, high-performance,
ANSI C coding methodology. In ICS ’97: Proceedings of the
11th International Conference on Supercomputing, pages 340—
347, New York, NY, USA, 1997. ACM Press. ISBN 0-89791-
902-5. doi: http://doi.acm.org/10.1145/263580.263662.

L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet,
R. Pozo, K. Remington, and R. C. Whaley. An updated set of
Basic Linear Algebra Subprograms (BLAS). ACM Transactions
on Mathematical Software, 28(2):135-151, June 2002.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
Pluto: A practical and fully automatic polyhedral program op-
timization system. In Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implemen-
tation (PLDI 08), pages 101-113, Tucson, AZ, June 2008.

U. Bondhugula, O. Gunluk, S. Dash, and L. Renganarayanan. A
model for fusion and code motion in an automatic paralleliz-
ing compiler. In Proceedings of the 19th International Con-
ference on Parallel Architectures and Compilation Techniques,
PACT ’10, pages 343-352, New York, NY, USA, 2010. ACM.

C. Chen, J. Chame, and M. Hall. CHILL: A framework for com-
posing high-level loop transformations. Technical Report 08-
897, Department of Computer Science, University of Southern
California, June 2008.

A. Darte and G. Huard. Loop shifting for loop parallelization.
Technical Report 2000-22, Ecole Normale Superieure de Lyon,
May 2000.

J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson.
An extended set of FORTRAN Basic Linear Algebra Subpro-
grams. ACM Transactions on Mathematical Software, 14(1):1-
17, March 1988.

J. J. Dongarra, J. D. Croz, S. Hammarling, and 1. Duff. A set of
level 3 Basic Linear Algebra Subprograms. ACM Transactions
on Mathematical Software, 16(1):1-17, March 1990.

J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de
Geijn. FLAME: Formal linear algebra methods environment.
ACM Trans. Math. Softw., 27(4):422-455, 2001.

A. Hartono, B. Norris, and P. Sadayappan. Annotation-based
empirical performance tuning using orio. In IPDPS ’09:
Proceedings of the 2009 IEEE International Symposium on
Parallel & Distributed Processing, pages 1-11, Washing-
ton, DC, USA, 2009. IEEE Computer Society. ISBN 978-
1-4244-3751-1. doi: http://dx.doi.org/10.1109/IPDPS.2009.
5161004. URL http://www.mcs.anl.gov/uploads/cels/
papers/P1556.pdfl Also available as Preprint ANL/MCS-
P1556-1008.

G. W. Howell, J. W. Demmel, C. T. Fulton, S. Hammarling, and
K. Marmol. Cache efficient bidiagonalization using BLAS 2.5
operators. ACM Trans. Math. Softw., 34:14:1-14:33, May 2008.

I. Karlin, E. Jessup, G. Belter, and J. G. Siek. Paralle]l memory
prediction for fused linear algebra kernels. SIGMETRICS Per-
form. Eval. Rev., 38:43-49, March 2011a. ISSN 0163-5999.
doi: http://doi.acm.org/10.1145/1964218.1964226. URL http:
//doi.acm.org/10.1145/1964218.1964226,

I. Karlin, E. Jessup, and E. Silkensen. Modeling the memory and
performance impacts of loop fusion. Journal of Computational
Science, In Press, Corrected Proof, 2011b. ISSN 1877-7503.
doi: DOI:10.1016/j.jocs.2011.03.002.

D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of
Scientific Computing. Brooks/Cole, third edition, 2002.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic
Linear Algebra Subprograms for Fortran usage. ACM Trans-
actions on Mathematical Software, 5(3):308-323, September

http://www.mcs.anl.gov/uploads/cels/papers/P1556.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1556.pdf
http://doi.acm.org/10.1145/1964218.1964226
http://doi.acm.org/10.1145/1964218.1964226

1979.

N. Megiddo and V. Sarkar. Optimal weighted loop fusion for paral-
lel programs. In Proceedings of the Ninth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, SPAA 97, pages
282-291, New York, NY, USA, 1997. ACM.

L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanu-
jam, and P. Sadayappan. Combined iterative and model-driven
optimization in an automatic parallelization framework. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Anal-
ysis, SC 10, pages 1-11, Washington, DC, USA, November
2010. IEEE Computer Society.

A. Qasem, G. Jin, and J. Mellor-Crummey. Improving perfor-
mance with integrated program transformations. Technical Re-
port TR03-419, Department of Computer Science, Rice Univer-
sity, October 2003.

A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tun-
ing of whole applications using direct search and a performance-
based transformation system. The Journal of Supercomputing:
Special Issue on Computer Science Research Supporting High-
Performance Applications, 36(9):183-196, May 2006.

K. Seymour, H. You, and J. Dongarra. A comparison of search
heuristics for empirical code optimization. In 2008 IEEE In-
ternational Conference on Cluster Computing, pages 421-429.
1EEE, 2008.

J. G. Siek. A modern framework for portable high performance
numerical linear algebra. Master’s thesis, University of Notre
Dame, 1999.

J. G. Siek, 1. Karlin, and E. R. Jessup. Build to order linear al-
gebra kernels. In Workshop on Performance Optimization for
High-Level Languages and Libraries (POHLL 2008), pages 1—
8, Miami, FL, April 2008.

A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth.
A scalable autotuning framework for compiler optimization. In
Proceedings of the 23rd IEEE International Parallel & Dis-
tributed Processing Symposium, Rome, Italy, May 2009.

R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical models
for empirical search-based performance tuning. International
Journal of High Performance Computing Applications, 18(1):
65-94, 2004. doi: 10.1177/1094342004041293. URL http:
//hpc.sagepub. com/content/18/1/65.abstract,

R. C. Whaley and J. J. Dongarra. Automatically tuned linear alge-
bra software. In Supercomputing '98: Proceedings of the 1998
ACM/IEEE conference on Supercomputing (CDROM), pages 1—
27, Washington, DC, USA, 1998. IEEE Computer Society. ISBN
0-89791-984-X.

Q. Yi and A. Qasem. Exploring the optimization space of dense
linear algebra kernels. In Languages and Compilers for Paral-
lel Computing: 21th International Workshop, LCPC 2008, Ed-
monton, Canada, July 31 - August 2, 2008, Revised Selected
Papers, pages 343-355, Berlin, Heidelberg, 2008. Springer-
Verlag. ISBN 978-3-540-89739-2. doi: http://dx.doi.org/10.
1007/978-3-540-89740-8_24.

Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. POET:
Parameterized optimizations for empirical tuning. In Proceed-
ings of the Parallel and Distributed Processing Symposium,
2007, pages 1-8, Long Beach, CA, March 2007. IEEE. doi:
10.1109/IPDPS.2007.370637.

Y. Zhao, Q. Yi, K. Kennedy, D. Quinlan, and R. Vuduc. Parameter-
izing loop fusion for automated empirical tuning. Technical Re-
port UCRL-TR-217808, Center for Applied Scientific Comput-
ing, Lawrence Livermore National Laboratory, December 2005.

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and oth-
ers acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

http://hpc.sagepub.com/content/18/1/65.abstract
http://hpc.sagepub.com/content/18/1/65.abstract

	Introduction
	BTO Overview
	Partitioning
	Search Framework

	Experimental Evaluation
	Analyzing the Full Search Space
	The Search Strategies
	Search Strategy Comparison
	Comparison with BLAS

	Related Work
	Conclusions and Future Work

